Copied to
clipboard

G = C42.158D10order 320 = 26·5

158th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.158D10, C10.322- 1+4, C10.1362+ 1+4, C4⋊D2035C2, C4⋊C4.115D10, C42.C214D5, D10⋊Q838C2, C4.D2032C2, (C4×C20).225C22, (C2×C20).191C23, (C2×C10).244C24, D10.13D437C2, C2.61(D48D10), (C2×D20).173C22, C22.265(C23×D5), D10⋊C4.74C22, C55(C22.56C24), (C2×Dic10).44C22, (C2×Dic5).126C23, C10.D4.55C22, (C22×D5).109C23, C2.33(Q8.10D10), (C5×C42.C2)⋊17C2, (C2×C4×D5).143C22, (C5×C4⋊C4).199C22, (C2×C4).208(C22×D5), SmallGroup(320,1372)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.158D10
C1C5C10C2×C10C22×D5C2×C4×D5D10⋊Q8 — C42.158D10
C5C2×C10 — C42.158D10
C1C22C42.C2

Generators and relations for C42.158D10
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >

Subgroups: 950 in 220 conjugacy classes, 91 normal (13 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, Dic10, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C22.56C24, C10.D4, D10⋊C4, C4×C20, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4.D20, D10.13D4, C4⋊D20, D10⋊Q8, C5×C42.C2, C42.158D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, 2- 1+4, C22×D5, C22.56C24, C23×D5, Q8.10D10, D48D10, C42.158D10

Smallest permutation representation of C42.158D10
On 160 points
Generators in S160
(1 68 11 78)(2 157 12 147)(3 70 13 80)(4 159 14 149)(5 72 15 62)(6 141 16 151)(7 74 17 64)(8 143 18 153)(9 76 19 66)(10 145 20 155)(21 46 31 56)(22 112 32 102)(23 48 33 58)(24 114 34 104)(25 50 35 60)(26 116 36 106)(27 52 37 42)(28 118 38 108)(29 54 39 44)(30 120 40 110)(41 82 51 92)(43 84 53 94)(45 86 55 96)(47 88 57 98)(49 90 59 100)(61 126 71 136)(63 128 73 138)(65 130 75 140)(67 132 77 122)(69 134 79 124)(81 115 91 105)(83 117 93 107)(85 119 95 109)(87 101 97 111)(89 103 99 113)(121 154 131 144)(123 156 133 146)(125 158 135 148)(127 160 137 150)(129 142 139 152)
(1 108 133 53)(2 54 134 109)(3 110 135 55)(4 56 136 111)(5 112 137 57)(6 58 138 113)(7 114 139 59)(8 60 140 115)(9 116 121 41)(10 42 122 117)(11 118 123 43)(12 44 124 119)(13 120 125 45)(14 46 126 101)(15 102 127 47)(16 48 128 103)(17 104 129 49)(18 50 130 105)(19 106 131 51)(20 52 132 107)(21 61 87 159)(22 160 88 62)(23 63 89 141)(24 142 90 64)(25 65 91 143)(26 144 92 66)(27 67 93 145)(28 146 94 68)(29 69 95 147)(30 148 96 70)(31 71 97 149)(32 150 98 72)(33 73 99 151)(34 152 100 74)(35 75 81 153)(36 154 82 76)(37 77 83 155)(38 156 84 78)(39 79 85 157)(40 158 86 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 57 11 47)(2 46 12 56)(3 55 13 45)(4 44 14 54)(5 53 15 43)(6 42 16 52)(7 51 17 41)(8 60 18 50)(9 49 19 59)(10 58 20 48)(21 147 31 157)(22 156 32 146)(23 145 33 155)(24 154 34 144)(25 143 35 153)(26 152 36 142)(27 141 37 151)(28 150 38 160)(29 159 39 149)(30 148 40 158)(61 85 71 95)(62 94 72 84)(63 83 73 93)(64 92 74 82)(65 81 75 91)(66 90 76 100)(67 99 77 89)(68 88 78 98)(69 97 79 87)(70 86 80 96)(101 124 111 134)(102 133 112 123)(103 122 113 132)(104 131 114 121)(105 140 115 130)(106 129 116 139)(107 138 117 128)(108 127 118 137)(109 136 119 126)(110 125 120 135)

G:=sub<Sym(160)| (1,68,11,78)(2,157,12,147)(3,70,13,80)(4,159,14,149)(5,72,15,62)(6,141,16,151)(7,74,17,64)(8,143,18,153)(9,76,19,66)(10,145,20,155)(21,46,31,56)(22,112,32,102)(23,48,33,58)(24,114,34,104)(25,50,35,60)(26,116,36,106)(27,52,37,42)(28,118,38,108)(29,54,39,44)(30,120,40,110)(41,82,51,92)(43,84,53,94)(45,86,55,96)(47,88,57,98)(49,90,59,100)(61,126,71,136)(63,128,73,138)(65,130,75,140)(67,132,77,122)(69,134,79,124)(81,115,91,105)(83,117,93,107)(85,119,95,109)(87,101,97,111)(89,103,99,113)(121,154,131,144)(123,156,133,146)(125,158,135,148)(127,160,137,150)(129,142,139,152), (1,108,133,53)(2,54,134,109)(3,110,135,55)(4,56,136,111)(5,112,137,57)(6,58,138,113)(7,114,139,59)(8,60,140,115)(9,116,121,41)(10,42,122,117)(11,118,123,43)(12,44,124,119)(13,120,125,45)(14,46,126,101)(15,102,127,47)(16,48,128,103)(17,104,129,49)(18,50,130,105)(19,106,131,51)(20,52,132,107)(21,61,87,159)(22,160,88,62)(23,63,89,141)(24,142,90,64)(25,65,91,143)(26,144,92,66)(27,67,93,145)(28,146,94,68)(29,69,95,147)(30,148,96,70)(31,71,97,149)(32,150,98,72)(33,73,99,151)(34,152,100,74)(35,75,81,153)(36,154,82,76)(37,77,83,155)(38,156,84,78)(39,79,85,157)(40,158,86,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,57,11,47)(2,46,12,56)(3,55,13,45)(4,44,14,54)(5,53,15,43)(6,42,16,52)(7,51,17,41)(8,60,18,50)(9,49,19,59)(10,58,20,48)(21,147,31,157)(22,156,32,146)(23,145,33,155)(24,154,34,144)(25,143,35,153)(26,152,36,142)(27,141,37,151)(28,150,38,160)(29,159,39,149)(30,148,40,158)(61,85,71,95)(62,94,72,84)(63,83,73,93)(64,92,74,82)(65,81,75,91)(66,90,76,100)(67,99,77,89)(68,88,78,98)(69,97,79,87)(70,86,80,96)(101,124,111,134)(102,133,112,123)(103,122,113,132)(104,131,114,121)(105,140,115,130)(106,129,116,139)(107,138,117,128)(108,127,118,137)(109,136,119,126)(110,125,120,135)>;

G:=Group( (1,68,11,78)(2,157,12,147)(3,70,13,80)(4,159,14,149)(5,72,15,62)(6,141,16,151)(7,74,17,64)(8,143,18,153)(9,76,19,66)(10,145,20,155)(21,46,31,56)(22,112,32,102)(23,48,33,58)(24,114,34,104)(25,50,35,60)(26,116,36,106)(27,52,37,42)(28,118,38,108)(29,54,39,44)(30,120,40,110)(41,82,51,92)(43,84,53,94)(45,86,55,96)(47,88,57,98)(49,90,59,100)(61,126,71,136)(63,128,73,138)(65,130,75,140)(67,132,77,122)(69,134,79,124)(81,115,91,105)(83,117,93,107)(85,119,95,109)(87,101,97,111)(89,103,99,113)(121,154,131,144)(123,156,133,146)(125,158,135,148)(127,160,137,150)(129,142,139,152), (1,108,133,53)(2,54,134,109)(3,110,135,55)(4,56,136,111)(5,112,137,57)(6,58,138,113)(7,114,139,59)(8,60,140,115)(9,116,121,41)(10,42,122,117)(11,118,123,43)(12,44,124,119)(13,120,125,45)(14,46,126,101)(15,102,127,47)(16,48,128,103)(17,104,129,49)(18,50,130,105)(19,106,131,51)(20,52,132,107)(21,61,87,159)(22,160,88,62)(23,63,89,141)(24,142,90,64)(25,65,91,143)(26,144,92,66)(27,67,93,145)(28,146,94,68)(29,69,95,147)(30,148,96,70)(31,71,97,149)(32,150,98,72)(33,73,99,151)(34,152,100,74)(35,75,81,153)(36,154,82,76)(37,77,83,155)(38,156,84,78)(39,79,85,157)(40,158,86,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,57,11,47)(2,46,12,56)(3,55,13,45)(4,44,14,54)(5,53,15,43)(6,42,16,52)(7,51,17,41)(8,60,18,50)(9,49,19,59)(10,58,20,48)(21,147,31,157)(22,156,32,146)(23,145,33,155)(24,154,34,144)(25,143,35,153)(26,152,36,142)(27,141,37,151)(28,150,38,160)(29,159,39,149)(30,148,40,158)(61,85,71,95)(62,94,72,84)(63,83,73,93)(64,92,74,82)(65,81,75,91)(66,90,76,100)(67,99,77,89)(68,88,78,98)(69,97,79,87)(70,86,80,96)(101,124,111,134)(102,133,112,123)(103,122,113,132)(104,131,114,121)(105,140,115,130)(106,129,116,139)(107,138,117,128)(108,127,118,137)(109,136,119,126)(110,125,120,135) );

G=PermutationGroup([[(1,68,11,78),(2,157,12,147),(3,70,13,80),(4,159,14,149),(5,72,15,62),(6,141,16,151),(7,74,17,64),(8,143,18,153),(9,76,19,66),(10,145,20,155),(21,46,31,56),(22,112,32,102),(23,48,33,58),(24,114,34,104),(25,50,35,60),(26,116,36,106),(27,52,37,42),(28,118,38,108),(29,54,39,44),(30,120,40,110),(41,82,51,92),(43,84,53,94),(45,86,55,96),(47,88,57,98),(49,90,59,100),(61,126,71,136),(63,128,73,138),(65,130,75,140),(67,132,77,122),(69,134,79,124),(81,115,91,105),(83,117,93,107),(85,119,95,109),(87,101,97,111),(89,103,99,113),(121,154,131,144),(123,156,133,146),(125,158,135,148),(127,160,137,150),(129,142,139,152)], [(1,108,133,53),(2,54,134,109),(3,110,135,55),(4,56,136,111),(5,112,137,57),(6,58,138,113),(7,114,139,59),(8,60,140,115),(9,116,121,41),(10,42,122,117),(11,118,123,43),(12,44,124,119),(13,120,125,45),(14,46,126,101),(15,102,127,47),(16,48,128,103),(17,104,129,49),(18,50,130,105),(19,106,131,51),(20,52,132,107),(21,61,87,159),(22,160,88,62),(23,63,89,141),(24,142,90,64),(25,65,91,143),(26,144,92,66),(27,67,93,145),(28,146,94,68),(29,69,95,147),(30,148,96,70),(31,71,97,149),(32,150,98,72),(33,73,99,151),(34,152,100,74),(35,75,81,153),(36,154,82,76),(37,77,83,155),(38,156,84,78),(39,79,85,157),(40,158,86,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,57,11,47),(2,46,12,56),(3,55,13,45),(4,44,14,54),(5,53,15,43),(6,42,16,52),(7,51,17,41),(8,60,18,50),(9,49,19,59),(10,58,20,48),(21,147,31,157),(22,156,32,146),(23,145,33,155),(24,154,34,144),(25,143,35,153),(26,152,36,142),(27,141,37,151),(28,150,38,160),(29,159,39,149),(30,148,40,158),(61,85,71,95),(62,94,72,84),(63,83,73,93),(64,92,74,82),(65,81,75,91),(66,90,76,100),(67,99,77,89),(68,88,78,98),(69,97,79,87),(70,86,80,96),(101,124,111,134),(102,133,112,123),(103,122,113,132),(104,131,114,121),(105,140,115,130),(106,129,116,139),(107,138,117,128),(108,127,118,137),(109,136,119,126),(110,125,120,135)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4G4H4I4J4K5A5B10A···10F20A···20L20M···20T
order122222224···444445510···1020···2020···20
size1111202020204···420202020222···24···48···8

47 irreducible representations

dim1111112224444
type++++++++++-+
imageC1C2C2C2C2C2D5D10D102+ 1+42- 1+4Q8.10D10D48D10
kernelC42.158D10C4.D20D10.13D4C4⋊D20D10⋊Q8C5×C42.C2C42.C2C42C4⋊C4C10C10C2C2
# reps12444122122148

Matrix representation of C42.158D10 in GL8(𝔽41)

119000000
3230000000
001190000
0032300000
000039132026
0000282215
0000261128
0000882230
,
00100000
00010000
400000000
040000000
00004002813
0000040280
000003810
000033801
,
20214010000
203740330000
40121200000
40332140000
00003528341
00001331035
000025253813
00002791919
,
0034340000
00170000
77000000
4034000000
0000101328
000035403237
000000735
000000834

G:=sub<GL(8,GF(41))| [11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,39,28,2,8,0,0,0,0,13,2,6,8,0,0,0,0,20,21,11,22,0,0,0,0,26,5,28,30],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,3,0,0,0,0,0,40,38,38,0,0,0,0,28,28,1,0,0,0,0,0,13,0,0,1],[20,20,40,40,0,0,0,0,21,37,1,33,0,0,0,0,40,40,21,21,0,0,0,0,1,33,20,4,0,0,0,0,0,0,0,0,35,13,25,27,0,0,0,0,28,31,25,9,0,0,0,0,34,0,38,19,0,0,0,0,1,35,13,19],[0,0,7,40,0,0,0,0,0,0,7,34,0,0,0,0,34,1,0,0,0,0,0,0,34,7,0,0,0,0,0,0,0,0,0,0,1,35,0,0,0,0,0,0,0,40,0,0,0,0,0,0,13,32,7,8,0,0,0,0,28,37,35,34] >;

C42.158D10 in GAP, Magma, Sage, TeX

C_4^2._{158}D_{10}
% in TeX

G:=Group("C4^2.158D10");
// GroupNames label

G:=SmallGroup(320,1372);
// by ID

G=gap.SmallGroup(320,1372);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,555,100,675,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽